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Abstract—A generalization of geometrically linear shear deformation theories for small elastic
strains is presented for multilayered axisymmetric shells of gencral shape without any assumption
other thun neglecting the transverse normal strain. The shear is taken into account by using a
function f({) which is introduced in the assumed kinematics. The boundary value problem is derived
from the principle of virtual power. With the “'shear” function f({) in the kinematics, all equations
are directly applicable to: Kirchhoff-Love, first-order shear deformation, third-order shear defor-
mation theories and, obviously, the proposed generalized shear deformation theory by using a
certain sine shear function. No shear-correction factors are needed with the proposed generalization
of shear deformation theories. A numerical evaluation of the new theory is presented and compared
with the above classic theories for a simply-supported thick laminated cylindrical shell under an
internal pressure.

INTRODUCTION

In practical applications, shell structures have been most commonly designed as axisym-
metric in shape, and a few, such as piping; pressure vessels, ranging from small, high-
pressure storage bottles to large chemical storage tanks and ballistic-missile rocket-motor
casings, are fully axisymmetric (shape and loading). Using theories or finite elements of
axisymmetric shape is thus morc cfficient than using theories or finite elements of general
shells to simulate the behaviour of such structures.

An increasing number of structural designs are extensively utilizing fiber composite
laminates. As in the case of laminated plates, the major higher-order effects in composite-
material shells are thickness—shear flexibility and thickness-normal stresses. Also, due to low
transverse shear moduli relative to in-plane Young's moduli, transverse shear deformation
effects are even more pronounced in composite laminates, except perhaps for hygrothermal
analysis. Likewisc three general approaches are used to analyse these effects: improved
shell theory ; microstructural continuum shell theory ; three-dimensional nonhomogeneous
elasticity theory for long hollow cylinders. As examples within the wide field of shell theories,
laminated shell theories, shell finite elements, are the contributions of Bert (1974), Naghdi
(1971), Bert and Francis (1974), Bhimaraddi (1985), Di Sciuva (1987) and Yang et al.
(1990). It would seem that the works published on axisymmetric shells are few.

Because of difficulties involved in deriving two-dimensional theories of shells from
three-dimensional equations of elasticity, assumptions of one kind or another must cus-
tomarily be introduced into the derivation. The aim of this paper is to propose a gener-
alization of shear deformation theories for multilayered moderately thick axisymmetric
shells. The shear is taken into account by introducing into the kinematics the shear function
S = (h/m) sin (r{/h), where { is the coordinate following the thickness 4 of the shell. The
corresponding boundary value problem is solved by using the principle of virtual power in
linear elasticity. All equations are presented with a general shear function f({) which allows
the users to deduce “'in extenso™ displacements, strains, equilibrium equations, boundary
conditions and the constitutive law ; for Kirchhoff-Love f({) = 0, first-order shear defor-
mation f({) = {. third-order shear deformation () = {(1-4{%/3h?) and generalized shear
deformation f({) = (h/m)sin (rnl/h) theories, for axisymmetric shells of general shape. A
numerical evaluation of theories is presented for a layered cylindrical shell under internal
pressure in statics. The computation of stress distributions seems to indicate the superiority
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of the proposed generalized shear deformation theory. The theory which ts geometrically
hnear. ts developed for small elastic strains.

The interest of such a work is in building a simple and efficient moderately thick
axisymmetric shell theory for the sizing of pressure vessels and piping, to analyse the
collapse modes of axisymmetric shells and to develop finite element approximation for
general cases such as arbitrary meridional shapes and nonlinear analysis.

GEOMETRICAL PRELIMINARIES

The fundamental problem of the theory of thin elastic shells is the formulation of a
two-dimensional system of differential equations and boundary conditions, for a rational
approximate determination of stresses and deformations in three-dimensional elastic bodies
shaped as a thin elastic layer surrounding a surface in space. the middle surface of the shell,

Consider the space surrounding an arbitrary surface A, hereafter designated the shell
middle surface, which is defined by two curvilinear orthogonal coordinates (&,. £, ) coinciding
with its lines of principal curvature. Let ¢, and €, be the unit vectors in the directions |
and &, respectively

6= o and é;=ux,
Cgy (8%}

where 7= {2, $5) s the position vector of a point on the reference surface. Coeflicients:

are those of the first fundamental form of the shell reference surfaces (surface metric
coeflictents). The unit vector perpendicular to A is denoted by #, which is chosen so that
(¢,.¢>.1) form a right-handed orthogonal system, 71 = ¢, A &,. The radii of curvature in
the directions of &, and &, are denoted by R, and R,, respectively, and are taken to be
positive when the centers of curvature lic in the negative direction of 7.

Let ¢ be a rectilinear coordinate measured along the normal 7 to A. Then, from the
surfuce geometry, we define the square of a line element through the middle surface A4 :

(dS)” = LI{dE ) + L&)  + ()",

and the volume element

where

¢ <
L, = 11<1+ R‘) L= :z;(!+ R)

are the Lame parameters or the coefficients of the second fundamental form of the shell
middle surface. For a point on the middle surface, because { = 0, we have

and the corresponding square of a line element is (the first fundamental form of the shell
middle surface)
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(ds)? = 2}(d3,)* +23(dSy)°.

GENERAL KINEMATICS FOR AXISYMMETRIC SHELLS OF ARBITRARY SHAPE

Let U\, U;, U: be the displacement components at an arbitrary point (&,.¢.,¢) and in
the direction of (¢,,€,,7). The displacement components are functions of &,.&,.{. For an
arbitrary shell and a geometrically linear theory, the strain—displacement relations (kine-
matic relations) have been given by Reissner (1966) in curvilinear coordinates:

I (1 éu, +81, U. | U;)
€ = —_—
a l+~C~ 2 6, S, 2%y R,
R,
| 1 ¢U, éx U, 1 1 U, éa, U,
p=——\— - + — = — 3
) l+£ 2, ¢, 02 22ty 1+ ¢ \ay 08y 0wy,
R| RZ
e = (‘_ o ﬂ) v,
‘ —|+ ¢ \x %, R, &
R,
QU.
£ = 3¢ (1)
4

with corresponding expressions for £, and .
For an axisymmetric shell where (7, ¢,) is the plane of symmetry, we have

U,=0 and 02/0&, =0. (2)
Equation (1) then becomes
| (1 v, U\)
fr = i ¢\, 9, R,
R,
I dx, U, U,
Lﬁ‘\ = o R
o C dé| A Ay R,
l I
+ R]
gy = | (1 U, U,\ U,
~l‘—l+ { \x, 3¢, R, o¢
R,
aU.
£y = 5o (3)
¢

It is possible that it will be required that all formulations of the two-dimensional theory
(still to be established) be deductions from a three-dimensional formulation of a relevant
boundary value problem, for instance by an asymptotic expansion of the displacement field.
But it is also possible, and very much more practical, to establish a major part of two-
dimensional shell theory without reference to any three-dimensional formulation. In this
last case, an approximate theory can be constructed on two-dimensional ad hoc assumptions
which should lead to the same or nearly the same results as the deductive steps from three
to two-dimensions. Then, we assume an approximate displacement field of the following
form for an axisymmetric shell:
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Axis
(of revolution

(a) ®

Fig. . Geometric variables for an arbitrary doubly curved shell of revolution : {a) meridional plane
(b) cross-section at point P.

S©O=( aw

— + QoG 1)
x4 o

L

U= a0+
%

U, =0

U. = w1 4)

¥

where 1 and w are displacements of a point P of the meridian, Fig. | (respectively following
meridional and transverse directions), w is the relative rotation of the cross-sections to the
meridian around the &,-axis and ¢ the time and dw/é&, is the Kirchhoff-Love rotation of
the cross-sections to the meridian also around the &,-axis.

Then, writing U, into egn (4) by taking

1 dw
Y= w4 357 (3)
oy U,
we obtain
oLy Cdw
U, == u(@,, )= = FYai A (9 i (SN))
o, Ay CGy
U: =0
U: = w(S).0). (6)

This lust equation shows that the function f({) is associated with the transverse shear, since
(1, 1) 15 the shear rotation.
The motives for assuming general kinematics under the form showed by eqn (4) are:

—we want only three independent generalized displacements,

—classical finite element approximations must be possible,

—the transverse shear is taken into account, without shear correction factors if f{{) 1s a
higher-order function of the thickness coordinate {,

—as usual in structural mechanics, we suppose a zero transverse normal strain (e;; = 0),
which is a good assumption, except perhaps for hygrothermal effects, or for a sandwich
shell in which the transverse rigidity of the core is small compared to that of skins,

—the necessity of recovering the classical thin shell and first-order shear deformation
theories.

There is no exact three-dimensional elasticity solution for shells, and rwo-dimensional
appropriate assumptions must be made in order to deduce an efficient theory, i.e. utilization
simplicity, accuracy, viable finite element approximations, shear deformation without cor-
rection factors, no higher-order derivatives in the kinematics (these involve some com-
plications to clarify the edge conditions), kinematics independent of the material behaviour
in order to extend the theory in plasticity.
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Some further comments will be made in the next section when we explain the function
S5y and clanfy eqn (4). Before this, we will compute strains to expose the boundary value
problem and the constitutive law with an arbitrary function f().

So. from eqn (3). the strains assoctated with the kinematics defined by eqn (4) are for
any function f():

! [«dR. N L, éu  fO =3 w f(O—=Cda, ow
&y = - P s U s s b ey gy - oy g oa
' JLdi xR A & 05 1 dE ¢
b+ =
R,
IS _]
x5, R,
i L d h 0 _u y A (o d N .
b = '[1; jf“zz+f(*,) "d_’f:f?w+f(”’)_’__-w+“]
¢ Laix: dsy iy dd, gy xxy dsSy R,
[+ —
R
1 I éw L, wu fO-( édw )
25.;=*-~;~[——-.::——-—‘~——————-;-;~—~/()«*
(O - T A 1, R, 2, R, t R,
I+ —
R,
if I cw df
+ “ +<( { ~l) ii‘ + 4—{»(:3. N
R, de 2, 0Z, dd

The last cquation in eygns (73, which represents the transverse shear strain, can still be
written after some rearrangements

B , }'(:1")- (8)

THE BOUNDARY VALUE PROBLEM FOR AXISYMMETRIC SHELLS OF ARBITRARY
SHAPE: THE GENERAL THEORY

A geometricully lincar theory for small elastic strains is discussed. The theory is
restricted to axisymmetric shells under axisymmetric loading and classical boundary con-
ditions, but is developed for any function f(J).

The shell considered has a uniform thickness which is much smaller than the shell's
radit of curvature. The shell may be composed of a single material or several different
materials bonded together in layers, cach layer having a constant thickness. Each layer may
be isotropic or orthotropic. The material propertics are assumed to be lincarly clastic. A
consistent combination of displacements (essential boundary conditions), forces and
moments (natural boundary conditions) are specified at the ends of the shell [ the upper
and lower lines { = +/4/2 being under a normal pressure. So, given the inttial gcometry of
the shell, its material properties, the prescribed end forees and displacements, the dis-
placements and stresses at every point of the shell are required. They are, in fact, obtained
by solving a two-dimcnsional boundary value problem, or a one-dimensional boundary
value problem in axisymmetric cases. This boundary value problem may be formulated by
a displacement variational method such as: the principle of virtual work, the principle of
virtual power. We choose the principle of virtual power [for example see Germain (1986)}.

Let © be a shell with tractions F prescribed along part of its boundary I', = [, and
displacements prescribed along the other part [, « I'yy,.. where the symbol < denotes a
subset. The upper and lower surfaces of the shell are taken to be under a normal pressure.

SAS 29:11-E
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To establish the boundary value problem by the principle of virtual power, from eqn
(4), we start by defining two spaces 4 and #* such that

Y = {U, =£La+ [(‘,)_ * fi +f (Do Uy=0: U-=w:

2, 2, LA

(e H' (E)xH (G): weH S ). mw.w and —o  specifiedon T, < e
or £

>t

{essential boundary conditions) } {9
U¥ = {U‘{ = — U*4 e e +/’(§)Q‘: Ut=0; U¥= W™
(U Qe H (EDxHY(E): W*eH (&), U*iszeroonl, < I}m} (10)

where H'(E,) and H(Z,) are Sobolev spaces. The space # is the space of admissible
displacements U(E . {. 1) defined in eqn (4), and the space #* is the space of virtual velocities
U*(¢,. ) which must be considered at a fixed time. We note that I is simply the ends of
the axisymmetric shell.

The principle of virtual power states that

edye

“find (u, w, w)e ¥ so that for every (U*, W* Q*ye #*, we have

J;zUU‘dzrn wfa,,f):;ds~+f?u*d:~+j FU* da, (ry
] #] i#] 1,

with a summationonfand j=1,2,3."

In eqn (11}, o is the stress tensor, D* the virtual strain rate tensor, p the mass density,
U = 0°U/dr? the acceleration vector, f the body foree vector, F the contact foree vector
prescribed on I, which is located at the ends of the shell in the axisymmetric case. The
virtual velocity U* is defined by eqn (10), while D} is exactly defined as in eqn (7). by
substituting ¢ by D*, u by U*, w by W* and w by 0Q*, in eqn (7). Equation (11) allows us
to obtain both equilibrium equations and boundary conditions. But it is still necessary to
develop the integrals in eqn (11).

The integral of the first member in eqn (11} is the acceleration virtual power #* and
is equal by definition to

Pr = ( pUU* dr

~

or, explicitly

‘(J. j [( p f(s)*s_f_“_ + f(O)é )( f(“’v):f(_iii_*
ES dsy

+f(§)ﬂ*)+\i"1*‘*]LxL: dg,dd,dd, (12)

where Ly = (1 +{/Ry)ag, f# = 1,2 and A is the constant shell thickness.
As all functions in eqn (12) are independent of &, (the axisymmetric case) and are
known functions of the { thickness-variable, then eqn {12) becomes
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ol [.. & 1 [, ¢w dw*
_y: = 27’[J [(I“U‘{“ - +[um )L"+ (qu u+ — X7 +[wnaj> -
0 Xy asx Xy €6y d¢,

L2
+(1,U¢z+;’ FE’—+1@>Q*+1W»:-W*}I1:<1§, (13)
1

where

wh 2 L 2 L ; L N
Uy A L L A L) = j p{(—‘) O =02 1.
x Xy x4

—h: 2 1
(SR =SOSR = (SO l] di. (14)

The first term of the second member of eqn (11) is the internal virtual power 2*:
Pr= —jn o, D} dr. From the definition of the virtual strain rates D} recalled above, the
internal virtual power becomes, in axisymmetric cases,

U*+
1xR dSi 9‘! ds; 3‘? dC 3! d¢, dé,

L W

T -(, dR, L, dU*  f(O- gd w* f(Q“‘%th;th
—2n - +

+,/'(C) dQ*+W*) T <L. da, f(c) ~{ da, dW*

x, d&, R L.jx, \xia, d, alz,  dE, dE,

S day W*) (df /@ )(ww* )} -
+1x’x: détﬂ * R, T dd R, L/a. a; dé&, +Q* )L LadS,dEL (15)

where we recall that
&y = ﬁ;;(fs)~ L;: = qu(l +C/Rﬂ)» Rﬁ = Rg;(éz)» f=1.2

From eqn (15), we define the following generalized stresses:

vh 2 +hi2
L, L, ..
Ny = 0’|:‘;;d5‘ Ny = 63— dg

A2 +82
+h'2 L, L
/‘/{Hz Co'”a-dc, Mzzzj- ngz_._l,dc

J A2 3 B2 X
- *eh 2 L. - +h2 Ll
M, = /(&)Un — dC« My, = S (o —d
JoR2 b2 2y
. df /@ ) L L,
= . =22
Qu J (d‘: R.L\/x, i a, a3 i (16)

which are the classical membrane forces Ny, flexural moments My, and other (refined or
higher-order) moments My, due to the shear function f({} and the shear force Q. We
note :

—with the Kirchhoff-Love theory. f({) = 0 and My, = 0, J; =0,
—with the first-order shear deformation theory, f({) = { and Mg = My,.

Thus, My, are in fact higher-order moments only found with refined theories.
These definitions [egn (16)] aliow us to simplify eqn (135):
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= ‘3"[! [(“"11 dR, Ny dz, = M ‘.‘Ez)u._, i{.,-:M“ dz, dWT
0 Ry 4,  znxdd zxR, dS, 2y dé, diy

(NH A!H> due (N” N ) ( =My, dx» O )dW‘
+ o+ — + — 4

1y 2R,/ d3, R, R, 111‘ i ds,

“’7“"1"{” d:W"' (1‘7{:: d

-+ + -

N o
X dé;

M,, dQ*
Q )Q“+ 2” az }x,a‘dw (17
{ H

XXz dsx

Finally. we need to explain the two other virtual powers in eqn (11): respectively the body
force virtual power #¥ and the contact force virtual power 2% The first is equal by definition

to
Pr= j fu* dr,
4
or, explicitly

P [eh DN=Cdwr .
Py = 21:J~ J‘ [}’1( U*+ f(g) : dd +f(C)Q*)+j;W"]L]L: dg, d¢. {18)
0 Jm2 Xy &

Finally, the contact force virtual power is

= J FU* da.
r,

or, explicitly

ek 2
PE = 27:} [ﬁ',( - U*+ At d-?’;’: +f(~,)Q*>+F W‘]L de (19
xy [» 5% d

~hi2

. . . . a8 Iy - el s
since the shell 1s axisymmetric, and where f|, f, are components of body forces, F|, F. are
components of contact (or end) forces, both in curvilinear ¢oordinates (&,,&,,¢). We

cstablish :
feh2 L L.
ny = fr( ) ~= d¢
Jomz Ay /) Az
" +hi2
= | S
feh 2
- qL; I.n
= ARt T4
q J-k2 j Ay As 5
(" L Ly,
ny = Si§ - —~dd. (20)
Jowz %y X
Then eqn (18) becomes
! m, dW*
y::Z’ZJ‘ (’hU‘ "“‘;‘_“!‘ d, +".'Z|Q‘+q;W‘ a;azdél. (2‘)
] H b1

We define equivalent quantities for contact force virtual power #¥at the ends of the shell:
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+h2 . L.
T| = Fl = d;
J-h2 1
) A . L. )
Cl = Fif(Q)—d¢
J-n2 X2
Pah2 . Lw
T.= F.—d¢
John2 3]
C+h2 . _LZ 3
¢ = Fi{—d¢ (22)
J-h2 x1;

So, contact (end) force virtual power can be written as

C—=C, dWwr '
Pr=2n ((T. + g—‘)U*‘+ ¢z — +C Q*+T. W*‘)az2 . (23)
R, x4 dé, ' 0

Finally, eqn (11) is equivalent to

Pr=Pr+Pr+Pr V(USLQ W) el* (11 bis)
and to verify the principle of virtual power, some integrations by part are necessary to
climinate the derivatives on the virtual velocity field U* e #* in eqns (13), (17) and (21).

After these classic manipulations, eqn (11), i.e. eqn (11 bis) implics («, and x, # 0):

Equilibrium equations for all U*(&)), W*(&,) and Q* (&)

Mll de Nﬂw dzv A/’Z: daz + l 0 (N A/,][) .
u 1 R dt,, a s, dgl a,a:Rl dél allaz aél Tihas R| o400y n,

N|| N:z l (7 M: —Mzzd'zz -~
Aw:: -"——'—h*‘*'w‘“_'— T +Q|: 3L $1
2 2 {

afal aé% Ay a:l d=| l
|
—afaz %, {07 —m )]
M')a dia - | a -
T T amds S tam o+ 2
Ao o X2 df, QI‘+ aja, 68, {Mni.a.}-*-m, ( )

The normal pressure, p, acting on the lines { = + #/2 is included by §: = ¢.+p in eqn (24).

Natural boundary conditions at the ends &, =0 and |, = | of the shell for all U*, W*,
diw*/dE,, Q*sothat &, =0o0r &, =1

R, R,
oM, oM | da,
A, —T+a.(m.—m.>+<—é ’“e?,"l)*a,d- (M =M,)
l da, 1 da ~
_a—’-a—s—l(M\ﬂ—A[sﬁ)"f‘_'l‘d_ (A’[H l,)—Q|;a|

0= (Cu- I)—(Mll—Mll)al
0=C,—-M, a,. (25)
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In eqns (24) and (25) we have included from eqn (13):

I SR .
A, =Lu+ - oo+ 1,0
Xy 09y
I ¢ N Rt .
A.-—[ﬁil-— v3% [uuCl‘+HT+I(yn'w XX
YA O, 2, €3y
Lo oW
A, = Lo+ - L -+ 1,0
Xy Ogy
N Y A )
An = ([‘“\u+ AT +Imw w 1|' (26)
1, S

Equation for 4, ineqn (26) is defined only at &, =0and &, = I.

Remarks

(a) We obtain the Kirchhoff-Love theory with My =i, = C,=0and §,. =0 in
eqns (24) and (25): f(O) = 0.

{b} We obtain the first-order shear deformation theory with :fi,,,, = My, 1y =m,,
C, = C,incygns (24) and (25): f(3) = C.

(¢) Essential boundary conditions have been defined in the space #, eqn (9).

THE CONSTITUTIVE LAW FOR MULTILAYERED AXISYMMETRIC SHELLS WITHIN THE
GENERAL THEORY

Let us consider a shell of constant thickness A consisting of & parallel thin layers of
orthotropic lincar elastic materials. The thickness of cach layer is assumed to be constant.
The material properties and the thickness of cach layer may be entirely ditferent. As usual
in structural mechanics, the normal transverse stress o is assumed to be small in comparison
with other normal stresses and 1s neglected. Except for local effect problems, this hypothesis
is well justiied. Taking into account this assumption and eliminating o in the usual
anisotropic linear-elastic constitutive law o, = C e (with summation on & and [ of 1-3),
where C,,, are the classic elastic coefficients, then, for cach layer of an axisymmetric shell
(with which we also have gy, = 0, = Oand ¢,, = £,; = 0) the constitutive relations become

Ty Chn Chn 0 &4y
a0 =i Chan 0 €12 (27
gy, 0 0 Ciypyd Qey;

where Clpy = Copn— CoaniCrins, Craaa s 2 ff = 1, 2, takes into account o;; = 0. Shear cor-
rection factors are only needed with the first-order shear deformation theory as discussed
in the next section.

To use equilibrium cquations (24), it is necessary to build a global constitutive law
with eqns (16) and (27). Substituting eqn (7) into eqn (27), then the result into eqn (16)
gives the global constitutive law :

N A B A B ™
Mbi=|B D B d]d™ (28)
s e e B DI ™
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and

~ ~ (1 ¢w
Ql: = Asj(“‘ rre '{"w) (29)
x €5y

In eqn (28), we have noted:

. } ‘o odx. wu
g, = —
11 ékl d;,‘ Aix>

1 ?':w+ 1 {fw 1dxy éw dou(l cw ow )} 30
o T T .. = w
X7 OGh Xy (‘g; 1: d&,t (S 11’1’ ds, S (0
and
P'={P,.P,;] with P=NMM (31)
- e df S©) ) L L,
:‘li.ﬂ = St = d¢ 2
o J\wﬁ’l C“”(dg R L IQ‘ at 11 d (3 )

The matrices A, B, A°, B, B, B’ d, D, D in eyn (28) are symmetric and defined by

R/ 2
- L, L Li o,
(AH'AIZ* A::) = J‘ ({”uas . C’; 122 “I‘- C‘22:2 ‘l "':) d‘:
B2 &2 2

(Bll-["ll-ull) =

(A, Ay Av) =

+hi2 Ls L LZ 2.
(8. 812 BY) 2J . C(CIIIII;‘:‘ C’uzzﬁl» C’n::-l“ —L) d¢

4l Lya, A
J(Q)(Cnn“zl: anz'C::na: E)ds

- - - e d2 L LZ o, ;
(B, B2 By) = f(s)(C’am Cix:**;‘i,CE::z_‘ d{

(f/u-dx:“/::) sf(‘,)

. o~ o , . Ly
(Ds,.D,;,D:3)= i f(S)(C'nn“'”"«Cuﬁ»czzzzm_iz“)dﬁ

g

where we recall: Ly = ag(i+{/Rg). (33)
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The global consttutive law. eqns (28) and (219). shows a coupling between membrane
(displacement wu), flexion (displacement w) and shear (rotation w), for any material. This
is due to the various curvatures of the shell and is well known.

CLASSICAL SHELL THEORY. PLUS FIRST-ORDER. THIRD-ORDER AND GENERALIZED
SHEAR DEFORMATION THEORIES

Now, to use eqns (4)-({33) we only have to choose the “shear™ function f(J). Several
options are proposed and will be numerically evaluated in a future section. For an axisym-
metric shell of general shape. these options are:

(a) ) =0 (34

and eqns (4)-(33) give the Kirchhoff-Love or classical thin shell theory. Then the cross-
sections remain plane and normal to the mendian,

(b) S = (35)

and eqns (4)-(33) give the first-order shear deformation theory (Retssner-Mindhin type
theory). Then this theory allows the cross-sections to rotate relative to the meridian, the
cross-scctions remaining plane, This theory requires the use of a shear correction factor
[correction of the shear modulus Cy oy inegn (32)] due to a rudimentary transverse shear
stress distribution which, tor example, is uniform for cylinders. The shear correction factor
w* has been evaluated in different ways,

{1) The right-hand side of eqn (32) 1s multiplicd by a sheur correction factor which is
chosen to make the first-order shear deformation theory as accurate as possible for a specific
problem. This technigque was introduced tor isotropic plates by Boll¢ (1947) in the manner
of Timoshenko (1922) tor beams, and by Mindhin (1951) using the asymptotic velocity of
transverse waves in a plate (Rayleigh waves), Bolle tound a correction factor equal to 5,6,
while Mindlin found a correction fuctor which, obviously depends on the Poisson ratio,

{it) In addition to the kinematic assumptions, one makes assumptions concerning the
distribution of stresses and strains through the thickness of the shell. Then a variational
principle has been employed to derive the constitutive law. This technique has been
employed by Retssner (1945) and Naghdi (1963). With this technique assuming that the
transverse sheur stresses vary guadratically through the thickness for the first-order shear
deformation theory, one found a shear correction factor equal to 5 6 for an isotropic plate.

(itf) For laminated plates, two shear correction fuctors have been determined by Whitney
(1972). Explicit expressions are obtained for sheur factors in eylindrical bending using the
constitutive law of cach layer in conjunction with the equilibrium equations which are
integrated through the thickness of the laminate in order to obtain the transverse shear
stresses. Integration constants are determined by satisfying the continuity of the transverse
shear stresses at the various layer interfaces und the boundury conditions at the top and
the bottom surfaces of the plate. For homogencous plates, the method gives shear correction
fuctors equal to 576.

The requirement of correction factors are i handicap to the use of the first-order shear
deformation theory in multilayered structures. The shear correction &7 will be introduced
in the right-hand side of eqn (32). i.c. the shear modulus Cy .y, is replaced by #°Cyy .

©) S = S =473 (36)

and eqns (4)-(33) give the third-order shear deformation theory. This function has been
uscd by Bhimaraddi (1984) within another kind of kinematics for cylinders, and by Reddy
and Liu (1985) for shallow-shells. This theory allows the cross-sections to rotate relative to
the meridian and to warp into a third-order polynomial shape.
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(d) S ) = (hm) sin (zgh) (37)

and eqns {(4)-(33) give the generalized shear deformation theory, where n = 3.141592, ..
Thus last type of kinematics which is new, has been applied to plates by Touratier (1991).
This theory allows the cross-sections to rotate relative to the meridian and to warp into a
sine shape.

The correctness of the generalized shear deformation theory

In the absence of an exact three-dimensional form for the shell displacements. we are
going to explain the choice of the kinematics in eqn (6) and the function given by the eqn
(37). using three-dimensional plate considerations without membrane effects because these
are well known and necessitate no justifications. Then, in eqn (6) membrane etfects are
represented by the term (L /2 ))u. Cheng (1979) has presented a method for the solution of
three-dimensional elasticity equations for the problem of thick plates. Through this method
three governing ditferential equations, the well-known biharmonic equation V:Viw = —g' D
(Vis the two-dimensional Laplacian, D the bending rigidity. ¢ the transverse load) ; a shear
equation (V- —(2p+ 1) =" /" )s = 0 (sisa shear function, pan integer) : and a transcendental
equation (1 V(1 —sin (AVY:AVYH = 0 (H is a stress function) are deduced from Navier's
cquations and are exact. We recall that the following discussion does not incorporate the
membrane displacement (L2 )u in eqn (6). Then, we propose building the shear-bending
displacement field according to the above three-dimensional considerations and taking into
account the motivations explained below egn (6). In the displacement field corresponding
to the bitharmonic cquation, we keep only the first term to avoid muatenial behaviour
dependence and higher-order dervatives: it is exactly the classical Kirchhofl Love dis-
placement ticld which corresponds to f(J) = 0, eqn (34), i.e. to — (%) Ow/EZ | and w terms
in cyn (0). Next, the shear cquation gives an in-ptane displacement ficld of which the
thickness dependence iy of the torm sin (Qp+ Drd/h), without any sunmmation on the
nonzero odd integer = 2p+ 1 Thus, we choose the particulur solution 2 = | and introduce
the multipher fuctor fi'n to build our generalized shear deformation theory so that
S5 = (h/mysin (ng, h). This justifies the term () (&, 1) inegn (6). Other particular choices
aren=3orn=5o0rn=7,.. Bul we remark that n = 1 is the only solution to recover
the first-order shear deformation theory by a truncation of the series development of the
function f{) = (A/m) sin{nlihy. In addition, the series development of sin (#d/#1) converges
more rapidly than the series development of sin (und/f) with n=3,5,... Note: all our
computations in this paper are made keeping the sine function intact (without any series
development truncation), Finally, the transcendental equation which gives a displacement
ticld with a material dependence and higher-order derivatives, has not been taken into
account.

All these remarks based on three-dimensional plate considerations have allowed us to
build shear-bending displacements in egn (6), or in eqn (4), and the generalized shear
deformation theory represented by egn (37), which is correct from the three-dimensional
clasticity for thick plates.

Remark 1. To explain more traditionally the above eqn (4) and the proposed function
S(3) given by egn (37). we are going to expand in a power scries of the thickness coordinate
{ the U, component of the displacement ficld in egn (4). [t 1s not necessary to examine
the other components, since U, = 0 (axisymmetry) and ;. = 0 which implies U: = w. In
principle, theories developed by this means can be made as accurately as desired simply by
including a sutficient number of terms, see Lo et al. (1977) for cxample. Unfortunately, this
method has serious limitations due to the great number of equations to be solved. Thus,
the component U of the displacement becomes, in the shear-bending case as in the preceding
discussion (we recall that we want to explain only the shear-bending terms in the dis-
placement field, the membranc term being classical)
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So. between eqns {4} and (6) for the component L', without the membrane term, and the
eqn {38). we have successively:

—from eqn (34). () = 0, then in eqn (38) taking into account eqns (4) and (6), we have:
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—from eqn (33). /() = (. then in eqn (38) taking into account eqns (4) and (6), we have:
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—{from eqn (36). f(J) = J(1 —47/34%) then in eyn (38) taking into account egns (4) and
(6). we have:
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then inegn (38) taking into account egns (4) and (6), we have:
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This shows the increasing refinement of the kinematics given by eqn (4) when we choose,
successively, the function f(Q) from eqn (34) to eqn (37).

Remark 2. 1t is interesting to note from the above constderations that

— i h—0, then f($) = (hin)sin(rlhy— 0, Ve [—N'2, + ;2] and the Kirchhofl-Love
theory is immediately recovered which is not the case with the first-order and the third-
order shear deformation theories |

~--the first-order shear deformation theory corresponds exactly to the first term of the series
development of the generalized shear deformation theory which uses the sine function

~—the third-order shear deformation theory s of the same order as the third-order serics
development of the generalized shear deformation theory.

Remark 3. Ineqn (8)if f(J) 1s defined by eyn (37). then df dy = cos (n{/h) and

(i) the transverse shear strain distribution is of high degree and a shear correction
factor is not needed ;

(it) f R, = » (cylinder cone), the boundary conditions for zcro stress are exactly
satisfied on the boundaries { = + /2

(111} for axisymmetric shells of general shape, these boundary conditions will be approxi-
mately satisficd WA {n R (L +72R)] « 1.
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In conclusion, the three-dimensional thick plate’s origin of the sine shear function (in
absence of a three-dimensional exact solution for shells) and the infinity of terms in its
polynomial representation allow us to hope that the corresponding theory will be accurate,
without increasing the complexity compared to the first-order shear deformation theory.

SOME APPLICATIONS AND EXTENSIONS OF THE GENERAL AXISYMMETRIC
SHELL THEORY

The preceding sections have been devoted to the axisymmetric shells of general shape.
We now investigate some classic shapes of axisymmetric shells (Fig. ).

{a) Cvlinder

Si=5 &Hi=00 Ri=»! Ri=R; x=1; ;=R 3%

Ry
=5, & =0; Ri=sw; Ry=——+scote; 2, =1,
S G2 1 = Gno @ !

gy = R= R.sing = Ry+sCos . {40y
For circular plates, we take Ry = 0,2, = R,
(¢) Circular toroidal section
S,=q@; Ep=10; Riconstan): R, = - +R;: x,=RK,;
G NS | 1t ) T ineg 1 : i

usz=R:5in(me‘+R|Sinlﬂ. (41)

() Spherical section

v =1 &y=0; Rdcomstunt); R, =R; x, =R, a,= R singp = R,sine.
42)
(¢} Puraboloid
R, R, .
=@ Ey=0; R=-——; Ry=—"-; 2, =R, ay=R=R,sing. (43
S1 =@, w2 1 COSJ({) T s o 1 i : 2 @ (43)
(£) Beant under traction-flexion in the plane (&,,), &, is the beum axis
‘f;zlvg: §§=13=i: Rngz'—‘:OO. {44)

In this problem the clastic modulus must be taken equal to
Chyio= E,, Young's modulus following &,.

The height of the beam is /2 and its width is unity. Finally, if

(i) f{) = 0. we obtain the Euler-Bernoulli beam theory:

(i) f(Q) = ¢, we obtain the Timoshenko beam theory, with a shear correction factor:

(i) f(C) = L(1-4C2/(3N7)), we obtain the Bickford (1982) theory; Levinson (1981)
uses the same function f({). but its theory cannot be deduced from the above model as the
Levinson theory is variationally inconsistent,

(iv) f(Q) = (h/m) sin (r{/h). gives the generalized shear deformation theory.



1394 M. TOURATIER
{(g) Curved beam in the plune (3,.0V: 2, is following its axis

=350 R =R} Ri=x: 2,=1; 2,=1 (43)
(h) Finite element approximations for a general shape (Faye, to appear)
The kinematics in eqn (4) requires the C' continuity for the deflection w. In order to
satisty the field compatibility (to avotd the shear locking phenomena). t.e. the same degree
of interpolation in the expression

1w ¢
for « and 5

Ve
=

Vo= <

1 Cgy

e

!

we suggest taking the classic Hermitian polynomial of degree three to interpolate w, and the
classic Lagrange polynomial of degree two to interpolate both the membrane displacement u
and the shear rotation . Then. the C' continuity is assured for w and « and o are of C*
continuity. as required. In lincar elasticity, eqns (7). (15) and (27) will be used to build the
stiffness matrix. An element such as that suggested above has three nodes with we, ¢w/ 3¢,
. o, as degrees of freedom at each end node of the element, and 1, o, as degrees of
freedom at the central node of the clement. Details for constructing such an element can
be found in Zienkicwicz (1979), especially how to interpolate the curvature. The principal
advantage of the present basic model, with /() = (4 7y sin (2/h) for finite element approxi-
mation, is its lack of need of shear correction luctors.

(1) Generalization regurding an arbitrary shell

We introduce in egn (4) for the component U of the displacement ficld an analog
form to the component &) now with the generalized displacements wy, wy, wi ff = 1,2, and
compute the strains using egn (1). Then, all equations will be deduced from eyn (1), the
local constitutive faw being g, = C 0 (Summation on & and /= 1,2,3) still with the
assumption g.. = 0. Except for panels and cylinders, such a model is very complicated to use,
and, today finite clement approximations are more useful when simulating the behaviour of
shells of arbitrary shapes, particularly for fully nonlincar analysis.

A NUMERICAL EVALUATION IN STATICS OF SEVERAL AXISYMMETRIC SHELL
THEORIES

An cevaluation of the generalized shear deformation theory is made in statics. The
sample problem chosen ts a simply-supported multilayered composite cylinder. Substitution
of eqns (28)—(33) and (39) into eqn (24) yields the diftferential equations for the stable static
loading problem of an orthotropic muitiluyered composite cylindrical shell under transverse
normal pressure (internal pressure) p, expressed in terms of displacements of the midsurface
of the shell (g, = dgidy):

12

A 11“‘”'4"(511 —Biw,, + R “','+El 1w, =0

R A ~ 28,, 2B,, -
(B — B, — [2 u, =D =2d + Dtt)“ﬂmx"" ("Ri“ - Rt + A 55)“‘,”
e =D+ [ B, +p=0
- Uw - ¢ Age— 2 e =
R: dyy 1 5% R W,
_ ] B - ) ~
B u (D —dw,, + R Ase pw, + Dy~ Assen =0 {46)

and corresponding natural boundary conditions. in fact, eqn (25) with R, = = nm, =
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m, = 0,dx./dZ, = 0. 2, = 1. Equations (46) are those of the generalized shear deformation
theory for a cylindrical shell under an axisymmetric normal pressure. In particular, we have

—Kirchhoff-Love theory with f() =0and B=B" =A=D=d =0,
—First-order sbear deformation theory with f(J) = and B, =8, =B, =B,
dll =D, =D||-BI:= Blz-

We assume that the normal pressure p as sinusoidal. Then, the system of differential
eqn (46) admits a solution of the form

u=Ucosis, w=Hsinis. w=CQcosis 47
with
p= Psinis (48)
for a sinusoidal pressure. In eqns (47) and (48). / is the length of the cylinder, 4, U, W, Q.
P are constants which are to be determined, with the exception of P, by the boundary
conditions. For a simply-supported cylindrical shell, these are [from eqns (9) and (29)]
w=0, M, =M, =0 N, =0 (49)
Boundary conditions in eqn {49) are satisfied by eqn (47) with

A=mu/l, m=123,5 ..., an odd tnteger. (50

Substituting cqns (47) and (48) into cqn (46} yiclds the following lincar algebraic system
which must be satisfied by the undetermined constants U, B and Q:

ayy, a;y o an J[{U 0
dys tay A WHWr=9=Pr, 5h
yy ry w02 0
where
A= —Ag it a, = (B,,—-l}“,,)ix—}-f’fR';).; dyy = — B, 2°

[

5

~ 28, 2B,, . )., 4
sy = (2[1” —'D” _Dll);~4 et <"“[‘.‘ e tat +/‘55)/.—‘" {R:
(l:_\=(11|1"‘D~1|)}.“"<.’755““ “;2:)/..; yy = "'15”;.1"‘1355. (52)

This system is casy to solve.

Remarks :

—if the pressure is distributed following a single sine curve, then m = 1 in eqns (50), and
only one solution 1s needed to obtain u, w, @,

—if the pressure is uniformly distributed, then m = 1,3,5,... in eqn (50), and in eqn (51)
P = 4P,/mn. The solution of eqn (51) is obtained by the superposition of solutions
corresponding to each m = 1,3, 5, ..., until convergence of the solutions:

u=3y Uycos(mnil)s; w=3 W,sin(mn/l)s: w =73 Q,cos(mnjl)s, (53)

—Wlth Ki!‘Cthﬁ'—Love {he()ry. Ay = Ayy =d31 = 0. g;; = {1” = 5]; = g;: = 1‘?55 =0
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—with first-order shear deformation theory. 8,, = B,,. d,, = D,,=D,.B,=8,,and
A is computed with £(J) = ¢, and possibly a shear correction factor.

The preceding analysis is applied to the stable static loading of a simply-supported
boron-epoxy composite circular cylindrical shell under internal radial pressure. The radial
pressure is P = 6210 MPa. The shell i1s assumed to be composed of four layers
(90 0 .0°/90) of boron-epoxy composite of equal thickness. The fibers of the outer layers
are then assumed to be oriented in the circumferential direction and the fibers in the inner
lavers are axially oriented. The following composite moduli and Poisson’s ratio are used in
the computation. Logan and Widera (1980):

E,=241.5GPa; E,=1898GPa: E,=E,
G.. =345GPa: G, =3518GPa; G =Gy,

vay = 0250 vy =024 vy =y,
The geometric properties of this thick cylindrical shell are:
R=14097m; A =02794m, /=1mor635m.

Then
R/h = 5.0454545; ['h = 3.5790981 or 22.727273; R/l = 1.4097 0r 0.222.

Tables 1-5 show results obtained for displuacements and stresses following the thickness of

Table 1. Maximum generalized displacements for a simply-supported circular

cylindrical boron-epoxy layered (90 707/0 /90"y shell under internal sinusordal

pressure. Symbols SIN, CLT, FSDT, TSDT respectively designate the gener-

alized shear deformution theory, the Kirchhofl Love theory, the first-order

shear deformation theory without correction factors and the third-order shear

deformation theory | which correspond respectively to f() = (W/r) sin(n/h);
L) =00 Q) = {0730

Theory w(l/2);inm w());mm w((); in rd
SIN 27284 10! 28919 % 10 0 ~3R42 <10
CLT 230Mix 10! Joa2ixio -
+SDT 26598 x 107" 29172 <10 ¢ ~49253x 10 *

TSDT 27247 <10 ¢} 293210 ~39622x 10 !

Table 2. Distribution of the a,; transverse shear stress throughout the thickness of a simply-supported circular

cylindrical boron-epoxy layered (90 /0°/0 /90 ) shell under internal sinusoidal pressure : SIN o is the generalized

shear deformation theory ; CLT g, is the KirchhotT-Love theory | FSDT o is the first-order shear deformation

theory; TSDT o,. is the third-order shear deformation theory. The distribution of the transverse shear stress

15 computed at the end &, =5 =0 of the shell. Symbols SIN, CLT, FSDT. TSDT correspond to f{(]) =
(mysin (n{/hy L ) = 0; f3) = £ Q) = S0 40730

SIN 7,.(0.) CLT o,:(0.{) FSDT 4,.(0.0) TSDT a,.(0.3)
in MPa in MPu in MPa in MPa
o = 0 {(meridian) 24492 4] 17,770 13816
5 = h'3 (interfiuce) 17.318 0 17.770 17.862
11.534 0 11.835 {1.896
- = 2 {externad face) &) 4] 11.835 0

Table 3. Distribution of the U, meridional displucement throughout the thickness of a simply-supported cylindrical

boron-cpoaxy (90 ,0 /0 ;90 ) layered shell under internal sinusoidal pressure. Symbols SIN, CLT, FSDT, TSDT

respectively represent the generalized shear deformation theory, the Kirchholf Love theory, the first-order shear

deformation theory and the third-order shear deformation theory, which correspond to f{J) = (i/r) sin (/1) :
Y =00 /@) = {3 f(O) = S(1-407307)

SIN U (0.0) CLT L,i0,3) FSDT U(0.9) TSDT L(0.3)

inm inm inm inm
+ = 0 {meridian) 28919 x10°° 30420 x10°° 29172 < 10" IR0
< = b4 (interface) —27245x 10 — 47892 % 10 ¢ —~3 486 x 10" —~ 2749 < 10!

o= h'2 (external face) —TH800x 10 —9 8826 x 10 ~6.5890 x 10 ~7.3868 <10 *
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Table 4. Distribution of the meridional stress a,, for a simply-supported boron-epoxy (90°,0°:07.90 ) lavered shell
under internal sinusoidal pressure. Symbols SIN, CLT, FSDT, TSDT respectively represent the generalized shear
deformation theory. the Kirchhotf-Love theory. the tirst-order shear deformation theory and the third-order
shear deformation theory, which correspond to f() = (A misin(n] A); f(3) =0 () = 12 () = 11477 347

SINg,(12.5)  CLTo(12.5) FSDTa, (125 TSDTa, (12

in MPa in MPa in MPa in MPa
¢ = 0 (mendian) ~13.184 —15.651 —13.599 —13.206

¢ = h.4 (interface) 216.08 372.18 248.20 217.70
24757 35.865 27.086 24875

+ = h2 (external face) 52.862 66.050 47.322 5229

Table 5. Distribution of the g, circumterential stress throughout the thickness of a simply-supported boron-

epoxy (90 .0 0 90 ) layered shell under internal sinusoidal pressure. Symbols SIN, CLT. FSDT. TSDT respec-

tively represent the generalized shear deformation theory. the Kirchhott-Love theory. the first-order sheur

deformation theory and the third-order shear deformation theory, which correspond to f({) = (A r)sin(n] k) ;
S =000 =30 = (1477 300)

SINg.(12.) CLTan(l2.0)  FSDTe.(1.2.0)  TSDTa. (120

in MPa in MPa in MPa in MPa

¢ = 0 (meridian) 36485 30.955 35.554 36.43

¢ = h/d (interface) 39.076 36.796 %802 19.059
451.28 87.47 440.64 450.71
o = h2 (external fuce) 437.98 377.63 42593 437.24

a multilayered cylindrical short shell with /=1 m. In these tables, symbols SIN, CLT,
FSDT, TSDT, respectively identify

SIN : the present generalized shear deformation theory with f(0) = (h/r) sin (n{/h).

CLT: the classical laminated theory, i.c. Kirchhofl Love theory for laminated, with
J©) =0,

FSDT: the first-order shear deformation theory without shear correction fuctor and
J©Q) =g,

TSDT: the third-order shear deformation theory such as:
S = S(1-43730°).

In Tables | -5, displacement distributions are deduced from egns (4), (39), (47) and (51)
and stress distributions from eqns (27), (7). (39), (47) and (51).

Discussion of the resulis
Comparisons of SIN, CLT, FSDT and TSDT theories in the absence of an exact three-
dimensional elasticity solution are made. Results in Tables 1-5 show that:

—The CLT solution is not applicable to the problem in question. [n fact, errors are large,
except for the membrane displacement which gives a deviation of 5% between CLT and
SIN solutions. All stresses become inaccurate when using the CLT theory.

—The FSDT solution gives a good approximation of transverse displacement, membrane
displacement, circumferential stress; but a large error is scen, compared with the SIN
solution for shear rotation @, meridional displacement U,. transverse shear stress g,
and meridional stress a4,

—-The TSDT solution involves a maximum deviation of 3.2% in comparison with the SIN
solution for shear rotation and transverse shear stress,

All inaccuracies observed on the short cylinder using CLT and FSDT are due to
transverse shear effects. To confirm this observation, it is sufficient to consider a simply-
supported moderately long cylinder : we have chosen / = 6.35 m, as in Logan and Widera
(1980). Then the maximum deviation between the SIN solution and CLT or FSDT solutions
for generalized displacements v and w is below 1%. For the meridional stress a,,(1/2,9),
the maximum deviation between the SIN and CLT theories is around 9% : and around 2%
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between the SIN and FSDT theories, at the interface [ = /i1 4 (SIN value = 3.4% MPa, the
maximum meridional stress is 10,5 MPa for all theones). The muximum transverse shear
stress 7, becomes very small in this example and 15 not significant: o, (0.0} = 0,21 MPa
with the SIN solution and #,-10.0) = 0.14 MPa with the FSDT solution. This s why all
theories give the sume results for maximum generalized displacements for o moderutely
long lavered evlindrical shell: wil 2) ~ 3361 < 10 "m:w0) ~ 1713 <10 'm.

Finally, us the generalized shear deformation theory proposed ts simple. it 15 suggested
itis used for any shell problems (thin and moderately thick shells with or without composite
materials). Anvway, a shear deformation theory has to be chosen for shell problems in
which the shear is significant, r.e. for example with moderately thick shells, laminated shells
{thin or thick) because they exhibit much fower strength in the transverse directions and at
the ply interfaces, thus being particularly susceptible to matrix cracking and delaminations.
Finally. shear deformation theories have to be chosen for any shell type in wave propagation
phenomenon analysis.

CONCLUDING REMARKS

In this paper, a generalized shear deformation theory has been proposed for moderately
thick multilayered axisymmetric shells without any assumption other than neglecting the
transverse nornul strain. The reduction of the three-dimensional problem to the bidi-
mensional one is accomplished assuming a displacement field which allows sine variations
throughout the thickness of the shell for the U menidional displacement, and a constant
vatue lor the (. radial displacement. The shear in the proposed theory s represented by
trigonometric functions and does not require the introduction of shear correction tactors.
The boundary value problem is solved by the principle of virtual power, and s fully
general when introducing a function /() m the kinematies fegn (4] which allows us to
systematically obtain all required results (kinematics, strams, cquilibrium cquations, natu-
ral boundary conditions, stresses, constitutive law) for the Kirchholl Love theory where
J(C) =0, the first-order shear deformation theory where f(0) = J, the third-order shear
detormation theory where f1(0) = J(| -42330%) and finally, a generalized shear defor-
mation theory where {0 = (in)ysin(xd/h). as proposed i this paper and which is new.
The theory is presented for an arbitrary shape of axisymmetric multifayered shells. Further
classic shapes are mentioned as examples, and the derivaton of a finite clement approxi-
mation for an arbitrary shape is indicated, as well as the extension to an arbitrary shell
without axisymmetry. A numerical test of comparison for a multilayered cylindrical shell
is given between the Kirchhoff Love theory, the first-order shear deformation theory, the
third-order shear deformation theory and the generalized shear deformation theory, From
a convergence point of view and in the absence of an exact three-dimensional clasticity solution
the numerical trend indicates as in plates that the better reference solution between all
theortes, seems to be that of the gencralized shear deformation theory, In fict. this behaviour
has been observed between the saume theories as in this paper, but for plates by compurison
with the exuact three-dimensional solution which cxists, Touratier (1991). Future work will
he turned toward the edge effects in the objective of the sizing of structures.

Achuowledygerents - Tiis basic work follows an applicd rescarch on the optimal design of wasymmetric shells
financed by TURBOMECA (Bordes, France) and the author thanks Dr 8. Lalanne for his encouragement towards
unproving basic models used for sizing of structures (optimal design).
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